39 research outputs found

    On the generalization of linear least mean squares estimation to quantum systems with non-commutative outputs

    Get PDF
    The purpose of this paper is to study the problem of generalizing the Belavkin-Kalman filter to the case where the classical measurement signal is replaced by a fully quantum non-commutative output signal. We formulate a least mean squares estimation problem that involves a non-commutative system as the filter processing the non-commutative output signal. We solve this estimation problem within the framework of non-commutative probability. Also, we find the necessary and sufficient conditions which make these non-commutative estimators physically realizable. These conditions are restrictive in practice.Comment: 31 page

    Interpolation Approach to Hamiltonian-varying Quantum Systems and the Adiabatic Theorem

    Full text link
    Quantum control could be implemented by varying the system Hamiltonian. According to adiabatic theorem, a slowly changing Hamiltonian can approximately keep the system at the ground state during the evolution if the initial state is a ground state. In this paper we consider this process as an interpolation between the initial and final Hamiltonians. We use the mean value of a single operator to measure the distance between the final state and the ideal ground state. This measure could be taken as the error of adiabatic approximation. We prove under certain conditions, this error can be precisely estimated for an arbitrarily given interpolating function. This error estimation could be used as guideline to induce adiabatic evolution. According to our calculation, the adiabatic approximation error is not proportional to the average speed of the variation of the system Hamiltonian and the inverse of the energy gaps in many cases. In particular, we apply this analysis to an example on which the applicability of the adiabatic theorem is questionable.Comment: 12 pages, to appear in EPJ Quantum Technolog

    Heisenberg Picture Approach to the Stability of Quantum Markov Systems

    No full text
    Quantum Markovian systems, modeled as unitary dilations in the quantum stochastic calculus of Hudson and Parthasarathy, have become standard in current quantum technological applications. This paper investigates the stability theory of such systems. Lyapunov-type conditions in the Heisenberg picture are derived in order to stabilize the evolution of system operators as well as the underlying dynamics of the quantum states. In particular, using the quantum Markov semigroup associated with this quantum stochastic differential equation, we derive sufficient conditions for the existence and stability of a unique and faithful invariant quantum state. Furthermore, this paper proves the quantum invariance principle, which extends the LaSalle invariance principle to quantum systems in the Heisenberg picture. These results are formulated in terms of algebraic constraints suitable for engineering quantum systems that are used in coherent feedback networks

    Synchronisation of micro-mechanical oscillators inside one cavity using feedback control

    Get PDF
    The purpose of this work is to develop a systematic approach towards synchronisation of two micro-mechanical oscillators inside one optical cavity using feedback control. We first obtain the linear quantum stochastic state space model for the optomechanical system considered in this paper. Then we design a measurement-based optimal controller, aimed at achieving complete quantum synchronisation of the two mechanical oscillators with different natural frequencies, in the linear quadratic Gaussian setting. In addition, simulation results are provided, which show how system parameters impact on the control effect. These findings shed light on the synchronised network of oscillators that can be used for memory and quantum state transfer.This research was supported by the Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology (project number CE110001027), AFOSR Grant FA2386-12-1-4075, and the Australian Research Council Discovery Project program.
    corecore